Title of Dissertation : ELECTROSTATIC MEMS ACTUATORS USING GRAY - SCALE TECHNOLOGY Brian
نویسندگان
چکیده
Title of Dissertation: ELECTROSTATIC MEMS ACTUATORS USING GRAY-SCALE TECHNOLOGY Brian Carl Morgan, Doctor of Philosophy, 2006 Dissertation directed by: Professor Reza Ghodssi Department of Electrical and Computer Engineering Institute for Systems Research The majority of fabrication techniques used in micro-electro-mechanical systems (MEMS) are planar technologies, which severely limits the structures available during device design. In contrast, the emerging gray-scale technology is an attractive option for batch fabricating 3-D structures in silicon using a single lithography and etching step. While gray-scale technology is extremely versatile, limited research has been done regarding the integration of this technology with other MEMS processes and devices. This work begins with the development of a fundamental empirical model for predicting and designing complex 3-D photoresist structures using a pixilated gray-scale technique. A characterization of the subsequent transfer of such 3-D structures into silicon using deep reactive ion etching (DRIE) is also provided. Two advanced grayscale techniques are then introduced: First, a double exposure technique was developed to exponentially increase the number of available gray-levels; improving the vertical resolution in photoresist. Second, a design method dubbed compensated aspect ratio dependent etching (CARDE) was created to anticipate feature dependent etch rates observed during gray-scale pattern transfer using deep reactive ion etching (DRIE). The developed gray-scale techniques were used to integrate variable-height components into the actuation mechanism of electrostatic MEMS devices for the first time. In static comb-drives, devices with 3-D comb-fingers were able to demonstrate >34% improvement in displacement resolution by tailoring their force-engagement characteristics. Lower driving voltages were achieved by reducing suspension heights to decrease spring constants (from 7.7N/m to 2.3N/m) without effecting comb-drive force. Variable-height comb-fingers also enabled the development of compact, voltagecontrolled electrostatic springs for tuning MEMS resonators. Devices in the low-kHz range demonstrated resonant frequency tuning >17.1% and electrostatic spring constants up to 1.19 N/m (@70V). This experience of integrating 3-D structures within electrostatic actuators culminated in the development of a novel 2-axis optical fiber alignment system using 3-D actuators. Coupled in-plane motion of electrostatic actuators with integrated 3-D wedges was used to deflect an optical fiber both horizontally and vertically. Devices demonstrated switching speeds <1ms, actuation ranges >35μm (in both directions), and alignment resolution <1.25μm. Auto-alignment to fixed indium-phosphide waveguides with <1.6μm resolution in <10 seconds was achieved by optimizing search algorithms. ELECTROSTATIC MEMS ACTUATORS USING GRAY-SCALE TECHNOLOGY
منابع مشابه
Simulation of a Microgripper with Electrothermal Actuator Using COMSOL Software Based on the Finite Element Method
Micro-electro-mechanical systems (MEMs) are Combination of electrical and mechanical components in Micron dimensions. In recent years, holding, actuating methods and handling of MEMs components such as microgripper, microsensors and etc. have been deeply studied. Microgrippers for handling, positioning and assembling of micro components are very useful so that for clamping need actuation create...
متن کاملSimulation of a Microgripper with Electrothermal Actuator Using COMSOL Software Based on the Finite Element Method
Micro-electro-mechanical systems (MEMs) are Combination of electrical and mechanical components in Micron dimensions. In recent years, holding, actuating methods and handling of MEMs components such as microgripper, microsensors and etc. have been deeply studied. Microgrippers for handling, positioning and assembling of micro components are very useful so that for clamping need actuation create...
متن کاملModelling the electrostatic actuation of MEMS : state of the art 2005
Most of MEMS devices are actuated using electrostatic forces. Parallel or lateral plate actuators are the types commonly used. Nevertheless, electrostatic actuation has some limitations due to its non-linear nature. This work presents a methodic overview of the existing techniques applied to the Micro-Electro-Mechanical Systems (MEMS) electrostatic actuation modeling and their implications to t...
متن کاملStability Analysis in Parametrically Excited Electrostatic Torsional Micro-actuators
This paper addresses the static and dynamic stabilities of a parametrically excited torsional micro-actuator. The system is composed of a rectangular micro-mirror symmetrically suspended between two electrodes and acted upon by a steady (dc ) while simultaneously superimposed to an (ac ) voltage. First, the stability of the system subjected to a quasi-statically applied (dc ) voltage is investi...
متن کاملDesign and Simulation of a Fluidic Micro-Bio-Sensor Based on Resonator Array
In this paper, a fluidic biosensor with possibility to fabricate by Micro-Electro-Mechanical Systems (MEMS) technology is proposed for biomedical mass detection and lab-on-chip applications. This is designed by electromechanical coupling of harmonic micromechanical resonators with harmonic springers as a mechanical resonator array. It can disperse mechanical wave along the array by electrostati...
متن کامل